Exercise 24

Find the derivative of the function using the definition of derivative. State the domain of the function and the domain of its derivative.

$$
f(x)=4+8 x-5 x^{2}
$$

Solution

Calculate the derivative of $f(x)$ using the definition.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[4+8(x+h)-5(x+h)^{2}\right]-\left(4+8 x-5 x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[4+8(x+h)-5\left(x^{2}+2 x h+h^{2}\right)\right]-4-8 x+5 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(4+8 x+8 h-5 x^{2}-10 x h-5 h^{2}\right)-4-8 x+5 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{8 h-10 x h-5 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(8-10 x-5 h) \\
& =8-10 x
\end{aligned}
$$

The domain of $f(x)$ is $\{x \mid-\infty<x<\infty\}$, and the domain of $f^{\prime}(x)$ is $\{x \mid-\infty<x<\infty\} . f(x)$ and $f^{\prime}(x)$ are polynomials, so any number can be plugged into them.

